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ABSTRACT

Chronoamperometric transients for diffusion controlled reactions at

stationary platinum and gold microelectrodes have been examined. The

results are compared with those predicted theoretically for hemispheri-

cal electrodes and for disk electrodes. The hemispherical model was

found to describe the current-time transients only qualitatively, while

excellent agreement was obtained between the theory for a stationary

disk and data for the hexacyanoferrate(II)/(III) redox reaction. Equa-

tions for mass transport to a stationary disk electrode derived earlier

form the basis for graphical methods of analysis of a single current-

time transient which permit the simultaneous determination of two of the

three parameters electrode radius, diffusion coefficient, and concentra-

tion. A plot of I vs. t" 2 has the advantage of simplicity. A logari-

thmic analysis (log I-log t) requires data over a greater time range but

offers advantages in characterizing electrode geometry. The effects of

surface irregularities and electrode sphericity are also discussed.



INTRODUCTION

Solid volamnmetric electrodes of micrometer size have been found to

have many advantages in comparison with large electrodes made of the

same material. 1-12 The most important feature of micro-electrodes is

the fact that the diffusion field increases in area with increasing

distance from the electrode so markedly that the conversion of material

by electrode reactions ceases to affect concentration profiles at rather

short times. This results in the development of steady state currents

at times which are experimentally convenient for avoiding mass transport

by convection. The other feature is very low total electrode capaci-

tance which allows for measurements of faradaic currents at very short

times of electrolysis. Because of very small size, power requirements

are minimized. The increasing interest in microelectrodes is also

connected with many applications in which the electrodes have to be

small, for example in bioengineering, medicine and microanalysis.

Microelectrodes of different shapes may be considered. Theory for

diffusion control and charge transfer control for finite spherical

electrodes has been developed in connection with polarographic applica-

tions. For a comprehensive review see Ref. 10. Electrochemical be-

havior at cylindrical electrodes has also been described.1 0  In the

latter case steady-state currents are not predicted. The solution of

the diffusion problem for a circular planar microelectrode has been

accomplished recently by Aoki and Osteryoung.11 Some earlier attempts

to describe this problem at stationary disks 3 ,13 produced equations

.... . . .. ...... .. .- 7- ..



which disagree with digital simulation 11,14,16

In recent papers dealing with several aspects of voltammetry at

microelectrodes, Dayton et al. 17'18 have used the hemispherical model

for diffusion at carbon fiber microelectrodes. Though this model

cannot describe quantitatively processes at planar electrodes, the

effect of surface irregularities and some electrode sphericity may lead

to experimental results similar to those predicted by the hemispherical

model.

The theory of diffusion at finite disk electrodes derived else-

where 11has been verified experimentally for longer times 12 and very

good agreement between the theoretical predictions and experimental

results has been found. In this paper we investigate the theory for

short times and extend measurements into the modified Cottrell region.

A simple method of graphical analysis of experimental chronoamperometric

transients allowing for simultaneous determination of the diffusion

coefficient and the electrode surface area (or the concentration of

reactant) is presented. The method of determining diffusion coeffi-

cients described before 12 is based on a complicated iterative numerical

procedure and assumes knowledge of other parameters, such as electrode

radius. The iterative method presented recently by Kakihana et al.
16

uses an approximate empirical expression for chronoamperometric curves

derived from the results of digital simulations:

y - 1.7947 + o.9979x + 0.4944exp(-O.7246x) (1)

where



x = ro/ X'

y = IFr nCD/v

and r is the radius of the electrode, D the diffusion coefficient of

the diffusing species, t the time after pulse application at which the

chronoamperometric current, I, is measured, n the number of electrons

per molecule of reactant, F the faraday and C0 the bulk concentration of

diffusing material. Equation I is apparently valid for r /Qt > 2.
0-

Again the treatment of data is unsatisfying because of complexity and

lack of generality.

General treatment. The analytical solution on the problem of mass

transport toward a stationary disk microelectrode under potentiostatic
11

conditions leads to the equations:

I = 4nFr OCof(T')/(l + C) (2)

where is given by the expression:

= (DO/DR )1/2 exp {(E-Ee) nF/RT} (3)

Here Ee is the formal potential for the reaction 0 + ne R, DO=D is

the diffusion coefficient of 0 and DR the diffusion coefficient of R.

Below we consider quantitatively only data obtained under conditions

where c - 0 and hence the current is independent of DR. The function

f(T') in eq 2 has been given in the form of an asymptotic series

(small T') and a descending series (large T') where the dimensionless

parameter t' is given by T' = 4Dt/r0
2.



When T' approaches zero, I approaches the Cottrell current, Id

nFAC'D/nt, and when T' approaches infinity, I approaches the steady-

state current, Is = 4nFC°Dr For further analysis, we will use the

dimensionless time T which is slightly different from T' and defined by

= (16/)Dt/ro2  (4)

The diffusion layer thickness under Cottrell control is 6c = vr- twhile

the steady-state diffusion layer thickness is 6s = lr 0/4. Thus T

(6c/6S).

The equations for f(T') of ref 11 may be expressed as functions of T:I,
1 T 31T2 31 STr 3 T2fl ( T ) = 1+ - T - (5)

1 v'it (- 2 T 225 (5)

and
4 -5/42 3/

f = f2  + + .35412 312 + 0.37875T -5 /2 + (6)

To simplify the use of this solution (eq 5 and 6) we first produce

a spliced equation good for all values of T. The functions fI and f2

(taken as above, without the remaining terms of the series) have two

intersection points as shown in Figure 1. It is apparent from this

figure that a good approximation for f(T) may be obtained by assuming

f(i) changes from fl to f2 somewhere in the range 2<T<5. The difference

in slope, af l/t - af2/aT, at the intersection point at T = 3.69 is

slightly less than that at T = 2.03, so that we use T - 3.69 as the

cross-over point between f, and f2. For further representation we use

then for f(t) the following expression:

-JI



f(T) = U(T-3.69) fl + [l-U(T-3.69)]f 2  (7)

where U(T-3.69) is the Heaveside that has the value 1 for T < 3.69 and

the value 0 for T > 3.69. The spliced f(T)-function, eq 7, is plotted

in Figure 2.

According to the definition of T (eq 4), the two limiting equa-

tions, i.e. the Cottrell equation and the steady-state equation, have an

intersection point at T = 1 where 6c = 6 S. As can be calculated from

log fl( ), the deviation of the logarithm of the actual current flowing

through the microelectrode from the logarithm of the steady-state cur-

rent is 0.250 at T = 1.

From eq 4

log t = y-log D + 2 log r0  (8)

where y = log T + log (r/16). The critical time, to, for which T = 1

depends on electrode radius and on the diffusion coefficient of the

diffusing species:

log to = log(r/16) - log D + 2 log r0  (9)

From eq 5-7 one can also calculate the values of T for which the current

deviates from the limiting Cottrell or steady state current by a given

percentage. These values of T may be used in eq 8 to calculate values

of ts and tc, the times at which the current deviates by a given frac-

tion from the steady state or the Cottrell current, respectively. As

the calculation of T involves a tedious, iterative procedure, several

examples calculated from eq 8 are plotted in Figure 3. Lines are



plotted for various values of D, and the values of T and y employed in

the calculations are included in Table I. Figure 3 may be used to

choose the electrode radius necessary to obtain steady-state currents at

a given time or to see when deviations from the Cottrell equation become

significant.

The previous experimental verification 12 of the theory11 for

stationary disk microelectrodes was carried out over the pertinent range

of r (0.005-25) but at rather long times (0.05-3 s). In the present

work the time of current measurement is extended to values as small as

130 -Ps and to values of T as small as 0.001. The electrode construction

was chosen to make possible measurements at such short times. In order

to check the accuracy of the spliced function f(T) (eq 7) logarithmic

analysis (log I vs. log t) was performed to investigate chronoampero-

metric relations over a wide range of elapsed time.

EXPERIMENTAL SECTION

Solutions were prepared using chemicals of reagent grade purity

(without further purification) and deionized water (18 M2 cm, Milli-Q

purification system).

The electrodes were constructed using fine metal wires. A platinum

wire of 0.2 mm diameter was carefully polished with polishing powders of

decreasing size down to 0.3 um (Dry Powder, Type A, Fisher Scientific

Co.) using a polishing cloth (Fisher, 12-28, 2B). The resulting thin

wire was etched in concentrated nitric acid, reduced in sulfuric acid

under cathodic bias with simultaneous copious evolution of hydrogen,



washed with deionized water and dried at room temperature. The Pt wire

was then soldered to a thick copper wire (diameter 0.5 mn), and the

junction was etched with acetone and ethyl alcohol. The electrolytic

reduction of surface platinum oxides was then repeated. The gold wires

were prepared similarly. However, after mechanical polishing an electro-

lytic dissolution in an alkaline cyanide bath was carried out. Each

fine metal wire thus obtained was embedded with epoxy resin into a glass

tube of external diameter at least 8 mm (in order to avoid edge effects).

The top of the glass tube was polished to obtain a flat surface. The

active area of these disk-electrodes was in the range 3 x 10-6 - 1.2 x

0 (the electrode radii 11-50 pm). The active electrode was
located approximately in the center of the top of a glass holder.

Before each experiment the electrodes were conditioned in O.lM H2SO4

under cathodic bias (E = -340 mV vs. SCE) for 10 minutes, cycled between

the potentials of oxygen and hydrogen evolution and reduced at E = -340

mV for 15 min.

A conventional three electrode design was used for measurements.

A platinum coil and saturated (KCI) calomel electrode were used as the

counter- and reference-electrodes, respectively. All potentials are

reported vs. SCE. Experiments were performed at 27*C.

The electronic set-up consisted of a Tacussel pulse unit, Model

UAP-4; PARC Model 173 (Princeton Applied Research) and Tacussel Model

PRG-3 potentiostats; Biomation Model 8100 fast 8-bit analog to digital

converter with 2024 K-word memory; Tektronix Model 603-A storage oscil-

loscope and Hewlett-Packard Model 7046A XY plotter.
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The sampling time was 1 or 5 ps for short-time measurements. In

some longer-time measurements sampling times in the range 50 Ps to 5 ms

were also used.

RESULTS AND DISCUSSION

Applicability of eq 5-7 for chronoamperometry at stationary disk

microelectrodes was checked using the hexacyanoferrate(II)/(III) redox

reactions at the platinum and gold electrodes. The range of potentials

where diffusion controlled currents flow through the electrode was

established on the basis of linear-sweep and normal-pulse voltammetric

characteristics. An example of the normal pulse voltammetric curves

obtained for the oxidation of ferrocyanide at a gold microelectrode is

shown in Figure 4 for the range of pulse widths 2.5 to 9 ms and sampling

time 5 Ps at the end of the pulse. Pulses of such short duration could

be applied because of very low electrode capacitance. In addition IR

compensation by positive feedback was employed using the UAP-4 pulse

unit.

The values of the electrode potentials selected on the basis of the

normal pulse experiments were in the range +280 to +340 mV and each

new electrode prepared was tested at these potentials (usually +320 mV).

For the conditioning potential the value -100 mV was used. After each

measurement the solution was extensively stirred by argon bubbling for

10 min. This was followed by a 20-min delay to minimize convection.

Typical direct chronoamperometric characteristics obtained for oxidation

of ferrocyanide at a gold microelectrode with radius 13.4 pm are presented

/



in Figure 5 for several values of electrode potential. The deviations

from the Cottrell equation at short and medium times are shown in Flaure

6 in which the experimental results (circles) and the theoreticel lines

are plotted in the coordinates I-t

In the coordinates I-t"1/2 the line for the Cottrell current (1) is

not an asymptote for the real current (2). Instead, curves (1) and (2)

become parallel at short times. From analysis of eq 5-7 one can state

that: 1) extrapolation of the short-time part of the I-t"1/2 curve for

the disk electrode to the ordinate gives the Intercept 1Is /4; 2) the

linear extrapolation of the real current (2') is shifted from the Cottrell

line by A'T/ro along the abscissa toward smaller values of t
1/2  3)

the slope of the experimental line at shorter times is roisrw/4 X.

Using any two of these three quantities, one can determine simultaneously

from one plot two of the three quantities: C, ro , and D.

It is also instructive to examine the relative deviation from the

Cottrell current. This is easily obtained from eq 5, which can be

Ipresented in the form

I nFDC A( + 01" 1(rDt)11/2[1 + 7irT/4

-3w 2 T3 /2 12 - 3157r 3T5 2/225 .... (10)

IThus

(1-1d)/] d - /4 - 3,R 2 13/2/212 -31503/2 /225-.* (11)

Equations 9 and 10 are valid for T < 3.69. For small values of T

the first term on the rlghthand side of eq 10 is the most lwiortant, so

I-__l



the lefthand side may be plotted versus R with initial slope (i.e. at T

0 0) equal to v/4. Such a plot is presented in Figure 5. Because the

relative deviation depends only on T, all the experimental results can

be represented in this plot. As can be seen the agreement between

theory and experiments is excellent. Small deviations from the theore-

tical line observed for some electrodes may be due to irregularities of

the electrode surface.

The entire measurement range of the chronoamperometric character-

istics, which consists of several separate experiments, is illustrated

in Figure 8 for three gold electrodes with radii 11.0, 13.4 and 19.0 im.

As in the case of the I-t"112 plot, from this log I-log t plot the

diffusion coefficient and the electrode surface area (or concentration

C*) can be determined simultaneously. In analogy with Figure 2, we have

log Id/alog t = 0.5 and a1og Is/alog t = 0. In addition, at ta to,

log I - log Is = log I -log Id = 0.250. Using these relations we can

obtain graphically from the log I vs. log t plot the quantities Id and

Is and hence r0D
1/2 and roD, respectively. These two are sufficient to

estimate ro and D. If they are correct, the appropriate value of to

should be obtained from eq 9. This test is very sensitive to even small

errors in r0 and 0. Such errors may come from incorrect estimation

of the limiting Cottrell line when the electrode is very small (compare

Figure 3) or from convection and mechanical vibrations of the measure-

ment cell which influence the limiting current, especially when measured

at longer times (larger electrodes). If the metal microelectrode is

embedded in relatively soft material and then is polished using dry

II



polishing powders, the chronoamperometric transients are characterized

by a greater value of to and higher currents in the Cottrell region as

well as in the steady-state domain. This effect may be due to some

sphericity of the electrode shape. In Figure 9 the experimental curve 3

obtained after dry polishing lies nearer to the theoretical curve 2 for

a hemispherical electrode than to the curve 1 for a disk electrode. The

usual definition of the reduced time parameter for hemispherical diffusion

is T" = rDt/r . However, for purposes of comparison we use T as defined

by eq 6 and thus the current for hemispherical diffusion is given by

Ih = 4nFDC (1 + 4r 0 (2/,i + w12) (12)

As seen in Figure I the linear parts of curve 2 are shifted with

respect to curve 1 in the Cottrell region by 0.301 (-log 2) and in the

steady-state region by 0.196 (=log n/2) toward higher currents. In

order to minimize the values of to and ts, flat electrodes should be

constructed. Furthermore, because the current is so sensitive to

geometry, it is essential to verify that the planar geometry is achieved

if measurements similar to those of Figures 6 and 8 are used to obtain

values of diffusion coefficients.

Table II presents results obtained from logarithmic analysis of

chronoamperometric data at various electrodes. The precision of the

values of ro and D for a single electrode is attained by rejecting data

giving different values of to. The accuracy of the determination of

electrode radius can be assessed by comparing the values obtained with

the "true" values obtained by direct measurement. This good agreement

I;
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taken together with the remarkable precision in the values of D shows

that chronoamperometric transients can be used reliably to determine the

flatness and size of microelectrodes. The precision of the values of D

over a five-fold range of electrode radius and ten-fold range of con-

centration argues well for the accuracy of the result. The value (7.94

± 0.06) x 10"6 cm2/s for hexacyanoferrate(II) may be compared with the

value of (7.84 + 0.02) x 10-6 cm2/s obtained by Sato, et al. for hexa-

cyanoferrate(III).16 Also, Aoki and Osteryoung obtained the value 6.8 x

106 cm2/s for hexacyanoferrate(II) with an estimate that the error was

10% or less.
12

In this work we have emphasized the use of the current-time transi-

ent to assess electrode geometry and measure electrode size and to

determine diffusion coefficients. As noted above, provided either r0 or

D is known these techniques can be used to determine concentration.

Applications of special interest are determination of electroactive

species at high concentrations and determination of electroactive

species in highly resistive solutions. The ability to operate at very

short times without unusual power requirements should make these elec-

trodes useful also for kinetic studies.

I
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FIGURE CAPTIONS

Fig. 1. Logarithmic plot of functions fl and f2 vs. dimensionless

time T (f1 I eq 7 for asymptotic expansion, f2 - eq 8 for
descending series).

Fig. 2. Dependence of the logarithm of the spliced function f (ea 9)

on log T. The limiting Cottrell function fc intersects with

the steady-state function f at T = 1.

Fig. 3. The relation between the critical time to (for equal deviations
from the Cottrell currents and steady-state currents), and times

ts and time tc for 1% deviation and the electrode radius, ro,
for various values of the diffusion coefficient:
1) 4 x 10-6, (2) 6 x 106, (3) 8 x 10 , (4) 1 x50-  2 10 , 10 6 1o 5

(5) 1.2 x 10. cm2s" .

Fig. 4. Normal pulse voltammograms for oxidation of Fe(CN)4 on a

stationary disk microelectrode. Sampling time: 5 us;
pulse width 2.5 to 9 ms as labeled; sweep rate 0.2 mV/s;

C' = 5.36 x 10-2 M in 0.5 M K2S04 ; electrode: Au, r. =

11.2 urm.

Fig. 5. Typical chronoamperometric transients at a gold stationary-

disk electrode (ro = 13.4 um) in 5 x 10- 3 M Fe(CN) 4 and

0.5 M K2S04. Conditioning potential: -100 mV. Pulse

amplitude as labeled.

Fig. 6. Chronoamperometric limiting current transient of Figure 5

in the coordinates I-t"I 2 . Circles - experimental points,

curve 1 - eq 9, curve 2 - extrapolation of the short-time

part of experimental curve, line 3 - calculated from Cottrell

equation for infinite planar electrode (of the same surface

area).

. .. .. . 1



Fig. 7. Relative deviation from the Cottrell current (1-1d,c)/-

Id,c vs. Fi. Experimental results obtained for gold
electrode with r. = 11.2 unm (open circles) and for platinum
electrode, ro = 26.1 Pm (filled circles); solid line - eq
12; dashed line - initial slope (at vi = 0) equal to r/4.

Fig. 8. Potentiostatic transients at Au microelectrodes over a wide
range of elapsed time using logarithmic coordinates. Sloped h

dashed lines correspond to the Cottrell currents and horizontal
ones to the steady-state currents. Curves 1-3 were calculated
from eq 7-9 for r0 : (1) 11.2 vim, (2) 13.4 Um and (3) 19.6 tim.

Circles are experimental results for oxidation of Fe(CN) 4

(5 x l0- M) in 0.5 M K2SO4.

Fig. 9. Effect of electrode sphericity and surface irregularities on
chronoamperometric transient. Curve 1 - eq 9 for disk

electrode, curve 2 - eq 14 for hemispherical model and

curve 3 - experimental, for electrode repolished with dry

powder; ro = 19.6 Pm.

I.- -- ~--------.-.---



TABLE I

Values of the Parameter y for Equation 10

Deviation from, %

Cottrell current current steady-state T Y

1 1.62 x 10-4  -12.4975

1O 1.62 x 10-2 -10.4975

20 6.49 x 10-2 - 9.8947

77.82 77.82 1. - 8.7070

- 20 5.73 - 7.9488

10 1.815 x 101 - 7.4481

1 1.640 x 103 - 5.4921

r in jim, t in s, 0 in cm2 /S

II
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Confection to "Chronoamperometric Transients at the

Stationary Disk Microelectrode"

Sir: Aoki and Osteryoung have reported the solution for
chronoamperometric transients at a finite disk electrode'
and tested the theory experimentally.' However, the work
of Sato et al.8 and of Heinze' suggested that there might 2

be errors in the solution. Subsequently, Hepel and Os--
teryoung elaborated on this work.' A recent paper by

Shoup and Szabo$ identifies an error in the long-time so-
lution of Aoki and Osteryoung.1 This error arises from
incorrect evaluation of-the residue r(,/4 + Z/2) - 2(- "

l)"/m! for Z - -2n 1/2, n = 0, 1, 2, ..- Consequently, ""
the first term for Wp in eq 25 of ref I should be multiplied
by 2 and the correct long-time expansion of eq 30 of ref
1 is'
lir flrl ) = I + 4x'3 /

2
"rl

-
1

/ 2 + 32(9-1 - 2)w-Sf2Vr13/2 + 0o ,-----,- . ...--
i" -0l -4 -a a aB A a to in

. 1+ 0.71835rf- 1/2 + 0.05626773 / - 0.006455874/' . LOG I a 10

(1)
bFgWS I. Plots of log f( 2) vs. Io r2 for (1) incorrect ong-time soutAo.

The dimensionless time, 71, is given byr, =; 4Dt/a2, where eq 4; (2) corrected long-time solution, eq 5; (3) empirical sOluton *a
D is the diffusion coefficient (cm 2/s), t the time (s), and 6; (4) short-time solution, eq 7.

a the radius of the electrode (cm). The current is expressed
as I = 4nFDaCbf(Tl)/(1 + .) as described previously.'-
Equation 1 is accurate for rT > I as can be seen by com-
parison with the empirical solution of ref 6:

(n,) - (1) Aoki, K.; Osteryoung, Janet J. Electroanal. Chem. 19I, /22,

0.7854 + 0.8862r,-1/2 + 0.2146 ezp(-0.7823rT- / I) (2) ia-5.

In ref 5 a slightly different defimition of the dimensionless (2) Aoki, K.; Osturyoung, Janet J. Electroonal. Chem. I9I, 125,
time was used: 1n-2.

r2 - 16Dt/wa 2 = 4v 1/s (3)"
(3) Kakihana. M.; fIeuchi, H.; Sato, G. P. J. Electroanal. Chem. 1961,

The incorrect eq 6 of ref 5 117,201.

f(,2 -
1 + 0.4052847r271/2 + 0.35412r2-3/ 2 + 0.378572- 6/2 ... (4) Heinze, J. J. Electroonal. Chem. 1981, 124, 73.

(4)

should be corrected to (5) Hepel. T.; Oateryoung, Janet J. Phys. Chem. 1982, 86, 1406-11.

-(r ) i (6) Shoup, D.; Szabo, A. J. Electroanal. Chem., 1952, 140, 237-45.

I + 0.81057Tr7 /2 + 0.0808292'-" / 2 - 0.011809727s/ 2 + 'InsMe of Cemlstry, Jaglietnian t wsy. 30..O Krakow. PoWnd.
(5)

Depatme of Chem,10y Tadeuss Hepe
which fits the empirical solution based on ref 6 state university of New Yor* ot Buffalo Woffg~ano Pt

-( ) - 0.7854 + 72
1
/

2 + 0.2146 exp(-0.88273t- 1/') (6) Buffelo, New York 14214 Janet Osteryoung"

for v?, > 1 as can be seen from Figure 1. Figure 1 also Re~ A4 0, 1982. In Fot Form: .dnaul 1. 195

shows the short-term expansion
f(i) M

0.78540 + i'"/ - 0.0072287,r2 - 0.00029108r22 + ... (7)

Note that in contrast to Figure I of ref 5, there are no
longer two intersections of the short- and long-time solu-
ticus The difference between the short-term expansion
(eq 7) and the long-term expansion (eq 5) has the mini-
mum value at r2 - 0.8623, log r - -0.06432. Thus the
Heaviside function of eq 7 of ref 5 should employ 0.9 rather
than 3.69 the crosover point between the two slutioa
On the scale of the figure as printed, this change causes
a barely preceptible change in Figure 2 of ref 5. The rest
of the figures and the treatment of data are unaffected by
th ar.
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